380 research outputs found

    Low energy recoil detection with a spherical proportional counter

    Full text link
    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am−9Be{}^{241}Am-{}^{9}{Be} fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keVkeV energy region was resolved by observing the 5.9 keV5.9\ keV line of a 55Fe{}^{55}Fe X-ray source, with energy resolution of 9%9\% (σ\sigma). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am−9Be{}^{241}Am-{}^{9}{Be} source, while SRIM was used to calculate the Ionization Quenching Factor (IQF). The GEANT4 simulated energy deposition spectrum in addition with the SRIM calculated quenching factor provide valuable insight to the experimental results. The performance of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).Comment: 16 pages, 16 figures, preprin

    Oriented polaritons in strongly-coupled asymmetric double quantum well microcavities

    Full text link
    Replacing independent single quantum wells inside a strongly-coupled semiconductor microcavity with double quantum wells produces a special type of polariton. Using asymmetric double quantum wells in devices processed into mesas allows the alignment of the electron levels to be voltage-tuned. At the resonant electronic tunnelling condition, we demonstrate that `oriented polaritons' are formed, which possess greatly enhanced dipole moments. Since the polariton-polariton scattering rate depends on this dipole moment, such devices could reach polariton lasing, condensation and optical nonlinearities at much lower threshold powers.Comment: 3 figure

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    Neutron spectroscopy with the Spherical Proportional Counter

    Full text link
    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of N2N_{2} with C2H6C_{2}H_{6} and pure N2N_{2} are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the 14N(n,p)C14{}^{14}N(n, p)C^{14} and 14N(n,α)B11{}^{14}N(n, \alpha)B^{11} reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a 252Cf{}^{252}Cf and a 241Am−9Be{}^{241}Am-{}^{9}Be neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.Comment: 7 pages, 10 figure

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure

    Optical control of spin textures in quasi-one-dimensional polariton condensates

    Full text link
    We investigate, through polarization-resolved spectroscopy, the spin transport by propagating polariton condensates in a quasi one-dimensional microcavity ridge along macroscopic distances. Under circularly polarized, continuous-wave, non-resonant excitation, a sinusoidal precession of the spin in real space is observed, whose phase depends on the emission energy. The experiments are compared with simulations of the spinor-polariton condensate dynamics based on a generalized Gross-Pitaevskii equation, modified to account for incoherent pumping, decay and energy relaxation within the condensate.Comment: 10 pages, 9 figure

    Polariton Condensate Transistor Switch

    Full text link
    A polariton condensate transistor switch is realized through optical excitation of a microcavity ridge with two beams. The ballistically ejected polaritons from a condensate formed at the source are gated using the 20 times weaker second beam to switch on and off the flux of polaritons. In the absence of the gate beam the small built-in detuning creates potential landscape in which ejected polaritons are channelled toward the end of the ridge where they condense. The low loss photon-like propagation combined with strong nonlinearities associated with their excitonic component makes polariton based transistors particularly attractive for the implementation of all-optical integrated circuits
    • …
    corecore